Головна » Інформатика

Мультиколінеарність у інформатиці

Тема 5 Мультиколінеарність Кафера інформатики та комп‘ютерних технологій доцент Бесклінська О.П.

Зміст 1.Поняття про мультиколінеарність та її вплив на оцінку параметрів моделі 2.Тестування наявності мультиколінеарності

1. Поняття про мультиколінеарність та її вплив на оцінку параметрів моделі Означення: Суть мультиколінеарності полягає в тому, що в багатофакторній регресійній моделі дві або більше незалежних змінних пов'язані між собою лінійною залежністю або, іншими словами, мають високий ступінь кореляції:

Природа мультиколінеарності Прибуток на акцію Дивіденди на акцію Ціна акції Дивіденди Прибуток

Практичні наслідки мультиколінеарності: мультиколінеарність незалежних змінних (факторів) призводить до зміщення оцінок параметрів моделі, які розраховуються за методом найменших квадратів. збільшення дисперсії та коваріації оцінок параметрів, обчислених за методом найменших квадратів

збільшення довірчого інтервалу (оскільки збільшується середній квадрат відхилення параметрів) незначущість t-статистик

Зауваження. Мультиколінеарність не є проблемою, якщо єдиною метою регресійного аналізу є прогноз (оскільки чим більше значення R2, тим точніший прогноз). Якщо метою аналізу є не прогноз, а дійсне значення параметрів, то мультиколінеарність перетворюється на проблему, оскільки її наявність призводить до значних стандартних похибок оцінок параметрів.

2. Тестування наявності мультиколінеарності

Велике значення R2 і незначущість t-статистики Велике значення парних коефіцієнтів кореляції. Зовнішні ознаки наявності мультиколінеарності

Для визначення мультиколінеарності здебільшого застосовують такі тести: F-тест, запропонований Глобером і Фарраром ( інша назва: побудова допоміжної регресії) Характеристичні значення та умовний індекс

Алгоритм Фаррара-Глобера 1. Визначити критерій Пірсона χ2 (“хі”- квадрат) для цього знайти а). нормалізовані змінні х1, х2, …, х m б). на основі матриці нормалізованих змінних, обчислити кореляційну матрицю:

в). обчислити визначник кореляційної матриці: г). обчислити критерій χ2: Порівняти значення χ2 з табличним при ступенями свободи і рівні значущості α (якщо χ2> χ2табл, то в масиві незалежних змінних існує мультиколінеарність).

2. Обчислити F- критерій Фішера. а). обчислити матрицю похибок: б). розрахувати F- критерії

Порівняти значення Fk з табличним при ступенями свободи і рівні значущості α (якщо Fk>Fтабл, то відповідна k-та незалежна змінна мультиколінеарна з іншими). в). розрахувати коефіцієнти детермінації для кожної змінної:

3. Визначити t- критерій Ст’юдента: де Порівняти значення з табличним при ступенями свободи і рівні значущості α то між незалежними змінними хk та хj існує мультиколінеарність). (якщо

Завдання для самостійного виконання: з підручника О.Є. Лугінін і інш. “Економетрія” с. 140-145–розібрати приклад 7.1, знайти помилки в обчисленнях.

Нехай -коефіцієнт детермінації в регресії, яка пов'язує фактор хi з іншими факторами. 1) для кожного коефіцієнта детермінації розраховуємо Fi-відношення: F-тест

F-тест перевіряє гіпотезу Н0 : проти гіпотези Н1: 2) Fкр знаходимо за таблицею F-розподілу Фішера з (т-1) і (п-т) ступенями свободи і заданим рівнем значущості; 3) якщо Fi > Fкр , то гіпотезу Н0 відкидаємо (хi — мультиколінеарний фактор), якщо Fi< Fкр , то гіпотезу Но приймаємо (фактор хi не є мультиколінеарним).


Теги: Бесклінська О.П.
Навчальний предмет: Інформатика
Переглядів/завантажень: 531/243


Схожі навчальні матеріали:
Всього коментарів: 0
avatar